Code Based Cryptology at TU/e

Ruud Pellikaan g.r.pellikaan@tue.nl

University Gadjah Mada
Yogyakarta
9 November 2015

Content

1. Ambassador of TU/e
2. Introduction on Coding, Crypto and Security
3. Public-key crypto systems
4. One-way functions and
5. Code based public-key crypto system
6. Error-correcting codes
7. Error-correcting pairs

- correct transmission of data
- error-correction
- no secrecy involved
- communication: internet, telephone, ...
- fault tolerant computing
- memory: computer compact disc, DVD, USB stick ...
- private transmission of data
- secrecy involved
- privacy
- eaves dropping
- insert false messages
- authentication
- electronic signature
- identity fraud

Security

- secure transmission of data
- secrecy involved
- electronic voting
- electronic commerce
- money transfer
- databases of patients

Public-key cryptography (PKC)

- Diffie and Hellman 1976 in the public domain in
- Ellis in 1970 for secret service, not made public until 1997
- advantage with respect to symmetric-key cryptography
- no exchange of secret key between sender and receiver

One-way function

- At the heart of any public-key cryptosystem is a
- one-way function
- a function $y=f(x)$ that is
- easy to evaluate but
- for which it is computationally infeasible (one hopes)
- to find the inverse $x=f^{-1}(y)$

Examples of one-way function

- Example 1
- differentiation a function is easy
- integrating a function is difficult
- Example 2
- checking whether a given proof is correct is easy
- finding the proof of a proposition is difficult

Integer factorization

- $x=(p, q)$ is a pair of distinct prime numbers
- $y=p q$ is its product
- proposed by Cocks in 1973 in secret service
- Rivest-Shamir-Adleman (RSA) in 1978 in public domain
- based on the hardness of factorizing integers

Discrete logarithm

- G is a group (written multiplicatively)
- with $a \in G$ and x an integer
- $y=a^{x}$
- Diffie-Hellman in 1974 and 1976 in public domain
- proposed by Williamson in 1974 in secret service
- based on difficulty of finding discrete logarithms in a finite field

Elliptic curve discrete logarithm

- G is an elliptic curve group (written additively) over a finite field
- P is a point on the curve
- $x=k$ a positive integer k
- $y=k P$ is another point on the curve
- obtained by the multiplication of P with a positive integer k
- proposed by Koblitz and Miller in 1985
- based on the difficulty of inverting this function in G

Code based cryptography

- H is a given $r \times n$ matrix with entries in \mathbb{F}_{q}
- x is in \mathbb{F}_{q}^{n} of weight at most t
- $\mathrm{y}=\mathrm{xH}^{T}$
- proposed by McEliece in 1978 and later by Niederreiter
- based on the difficulty of decoding error-correcting codes
- it is NP complete

NP complete problems

- NP = nondeterministic polynomial time
- given a problem with yes/no answer
- if answer is yes and the solution is given
- then one can check it in polynomial time
- Input: integer n
- Query: can one factorize n in $n=p q$ with p and $q>1$?
- if answer is yes and someone gives p and q
- then one easily checks that $n=p q$
- otherwise it is difficult to find p and q

Abstract

- error-correcting codes
- error-correcting pairs correct errors efficiently
- applies to many known codes
- prime example Generalized Reed-Solomon codes
- can be explained in a short time
- is a distinguisher of certain classes of codes
- McEliece public-key cryptosystem
- polynomial attack if algebraic geometry codes are used
- ECP map is a one-way function

Error-correcting codes

Q alphabet of q elements Hamming distance between \mathbf{x}, \mathbf{y} in Q^{n}

$$
d(\mathbf{x}, \mathbf{y})=\min \left\{i: x_{i} \neq y_{i}\right\} \mid
$$

C block code is a subset of Q^{n}

$$
d(C)=\min |\{d(x, y): x, y \in C, x \neq y\}|
$$

minimum distance of C

$$
t(C)=\left\lfloor\frac{d(C)-1}{2}\right\rfloor
$$

error-correcting capacity of C

Linear codes

\mathbb{F}_{q} the finite field with q elements, $q=p^{e}$ and p prime \mathbb{F}_{q}^{n} is an \mathbb{F}_{q}-linear vector space of dimension n
C linear code is an \mathbb{F}_{q}-linear subspace of \mathbb{F}_{q}^{n}
parameters $[n, k, d]_{q}$
$q=$ size finite field
$n=$ length of C
$k=$ dimension of C
$d=$ minimum distance of C

Singleton bound $d \leq n-k+1$
Maximum Distance Separable (MDS) if $d=n-k+1$

Inner product and dual space

The standard inner product is defined by

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+\cdots+a_{n} b_{n}
$$

Two subsets A and B of \mathbb{F}_{q}^{n} are perpendicular:
$A \perp B$ if and only if $\mathbf{a} \cdot \mathbf{b}=0$ for all $\mathbf{a} \in A$ and $\mathbf{b} \in B$
Let C be a subspace of \mathbb{F}_{q}^{n} The dual space is defined by

$$
C^{\perp}=\{\mathbf{x}: \mathbf{x} \cdot \mathbf{c}=0 \text { for all } \mathbf{c} \in C\}
$$

If C has dimension k, then C^{\perp} has dimension $n-k$

Star product

The star product is defined by coordinatewise multiplication

$$
\mathbf{a} * \mathbf{b}=\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right)
$$

For two subsets A and B of \mathbb{F}_{q}^{n}

$$
A * B=\langle\mathbf{a} * \mathbf{b}| \mathbf{a} \in A \text { and } \mathbf{b} \in B\rangle
$$

Efficient decoding algorithms

The following classes of codes:

- Generalized Reed-Solomon codes
- Cyclic codes
- Alternant codes
- Goppa codes
- Algebraic geometry codes
have efficient decoding algorithms:
- Arimoto, Peterson, Gorenstein, Zierler
- Berlekamp, Massey, Sakata
- Justesen et al., Vladut-Skrobogatov,
- Error-correcting pairs

Error-correcting pair

Let C be a linear code in \mathbb{F}_{q}^{n}
The pair (A, B) of linear subcodes of $\mathbb{F}_{q^{m}}^{n}$ is a called a t-error correcting pair (ECP) over $\mathbb{F}_{q^{m}}$ for C if

$$
\begin{array}{ll}
\text { E. } 1 & (A * B) \perp C \\
\text { E. } 2 & k(A)>t \\
\text { E. } 3 & d\left(B^{\perp}\right)>t \\
\text { E. } 4 & d(A)+d(C)>n
\end{array}
$$

Generalized Reed-Solomon codes

Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ be an n-tuple of mutually distinct elements of \mathbb{F}_{q}
Let $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)$ be an n-tuple of nonzero elements of \mathbb{F}_{q}
Evaluation map:

$$
\mathrm{ev}_{\mathrm{a}, \mathrm{~b}}(f(X))=\left(f\left(a_{1}\right) b_{1}, \ldots, f\left(a_{n}\right) b_{n}\right)
$$

$G R S_{k}(\mathbf{a}, \mathbf{b})=\left\{\operatorname{ev}_{\mathbf{a}, \mathbf{b}}(f(X)) \mid f(X) \in \mathbb{F}_{q}[X], \operatorname{deg}(f(X)<k\}\right.$
Parameters: [$n, k, n-k+1$] if $k \leq n$
Furthermore

$$
\begin{aligned}
& \mathrm{ev}_{\mathrm{a}, \mathrm{~b}}(f(X)) * \mathrm{ev}_{\mathrm{a}, \mathrm{c}}(g(X))=\mathrm{ev}_{\mathrm{a}, \mathrm{~b} * \mathrm{c}}(f(X) g(X)) \\
& G R S_{\mathrm{k}}(\mathrm{a}, \mathrm{~b}) * G R S_{l}(\mathrm{a}, \mathrm{c})=G R S_{k+l-1}(\mathrm{a}, \mathrm{~b} * \mathrm{c})
\end{aligned}
$$

t-ECP for $\operatorname{GRS}_{n-2 t}(\mathrm{a}, \mathrm{b})$

Let $C^{\perp}=G R S_{2 t}(\mathbf{a}, 1)$
Then $C=G R S_{n-2 t}(\mathbf{a}, \mathbf{b})$ for some \mathbf{b}
has parameters: [$n, n-2 t, 2 t+1$]

Let $A=G R S_{t+1}(\mathbf{a}, 1)$ and $B=G R S_{t}(\mathbf{a}, 1)$
Then $(A * B) \subseteq C^{\perp}$
A has parameters $[n, t+1, n-t]$
B has parameters [$n, t, n-t+1$]
So B^{\perp} has parameters $[n, n-t, t+1]$

Hence (A, B) is a t-error-correcting pair for C

Kernel of a received word

Let A and B be linear subspaces of $\mathbb{F}_{q^{m}}^{n}$ and $r \in \mathbb{F}_{q}^{n}$ a received word
Define the kernel

$$
K(\mathbf{r})=\{\mathbf{a} \in A \mid(\mathbf{a} * \mathbf{b}) \cdot \mathbf{r}=0 \text { for all } \mathbf{b} \in B\}
$$

Lemma
Let C be an \mathbb{F}_{q}-linear code of length n
Let r be a received word with error vector e
So $r=c+e$ for some $c \in C$
If $(A * B) \subseteq C^{\perp}$, then

$$
K(\mathrm{r})=K(\mathrm{e})
$$

Kernel for a GRS code

Let $A=G R S_{t+1}(\mathbf{a}, 1)$ and $B=G R S_{t}(\mathbf{a}, 1)$ and $C=\langle A * B\rangle^{\perp}$
Let
$\mathrm{a}_{i}=\mathrm{ev}_{\mathrm{a}, 1}\left(X^{i-1}\right)$ for $i=1, \ldots, t+1$
$\mathrm{b}_{j}=\mathrm{ev}_{\mathrm{a}, 1}\left(X^{j}\right)$ for $j=1, \ldots, t$
$\mathrm{h}_{l}=\mathrm{ev}_{\mathrm{a}, 1}\left(X^{l}\right)$ for $l=1, \ldots, 2 t$

Then

$\mathrm{a}_{1}, \ldots, \mathrm{a}_{t+1}$ is a basis of A
$\mathbf{b}_{1}, \ldots, \mathbf{b}_{t}$ is a basis of B
$h_{1}, \ldots, h_{2 t}$ is a basis of C^{\perp}

Furthermore

$$
\mathrm{a}_{i} * \mathrm{~b}_{j}=\mathrm{ev}_{\mathrm{a}, 1}\left(X^{i+j-1}\right)=\mathbf{h}_{i+j-1}
$$

Matrix of syndromes for a GRS code

Let r be a received word and
$\left(s_{1}, \ldots, s_{2 t}\right)=r H^{T}$ its syndrome
Then

$$
\left(\mathbf{b}_{j} * \mathbf{a}_{i}\right) \cdot \mathbf{r}=s_{i+j-1}
$$

To compute the kernel $K(\mathbf{r})$ we have to compute the null space of the matrix of syndromes

$$
\left(\begin{array}{lllll}
s_{1} & s_{2} & \cdots & s_{t} & s_{t+1} \\
s_{2} & s_{3} & \cdots & s_{t+1} & s_{t+2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
s_{t} & s_{t+1} & \cdots & s_{2 t-1} & s_{2 t}
\end{array}\right)
$$

Error location

Let (A, B) be a t-ECP for C
Let J be a subset of $\{1, \ldots, n\}$
Define the subspace of A of error-locating vectors:

$$
A(J)=\left\{\mathbf{a} \in A \mid a_{j}=0 \text { for all } j \in J\right\}
$$

Lemma
Let $(A * B) \perp C$
Let e be an error vector of the received word r
If $I=\operatorname{supp}(e)=\left\{i \mid e_{i} \neq 0\right\}$, then

$$
A(I) \subseteq K(\mathbf{r})
$$

Error positions

Lemma

Let $(A * B) \perp C$
Let \mathbf{e} be an error vector of the received word r
Assume $d\left(B^{\perp}\right)>w t(e)=t$
If $I=\operatorname{supp}(e)=\left\{i \mid e_{i} \neq 0\right\}$, then

$$
A(I)=K(\mathbf{r})
$$

If a is a nonzero element of $K(\mathrm{r})$
J zero positions of a
Then

$$
I \subseteq J
$$

Basic algorithm

Let (A, B) be a t-ECP for C with $d(C) \geq 2 t+1$
Suppose that $c \in C$ is the code word sent and $r=c+e$ is the received word for some error vector e with $\mathrm{wt}(\mathrm{e}) \leq t$

The basic algorithm for the code C :

- Compute the kernel $K(r)$

This kernel is nonzero since $k(A)>t$

- Take a nonzero element a of $K(\mathbf{r})$

$$
K(\mathbf{r})=K(\mathbf{e}) \text { since }(A * B) \perp C
$$

- Determine the set J of zero positions of a

$$
\operatorname{supp}(\mathbf{e}) \subseteq J \text { since } d\left(B^{\perp}\right)>t
$$

- Compute the error values by erasure decoding

$$
|J|<d(C) \text { since } n-d(A)<d(C)
$$

t-ECP corrects t errors efficiently

Theorem

Let C be an \mathbb{F}_{q}-linear code of length n Let (A, B) be a t-error-correcting pair over $\mathbb{F}_{q^{m}}$ for C

Then the basic algorithm corrects t errors for the code C with complexity $\mathcal{O}\left((m n)^{3}\right)$

Code based PKC systems - 1

McEliece:

Let \mathcal{C} be a class of codes that have
efficient decoding algorithms correcting t errors with $t \leq(d-1) / 2$

Secret key: (S, G, P)
$-S$ an invertible $k \times k$ matrix
$-G$ a $k \times n$ generator matrix of a code C in \mathcal{C}.
$-P$ an $n \times n$ permutation matrix

Public key: $G^{\prime}=S G P$

Code based PKC systems - 2

McEliece:

Encryption with public key $G^{\prime}=S G P$ and message m in \mathbb{F}_{q}^{k} :

$$
\mathbf{y}=m G^{\prime}+\mathbf{e}
$$

with random chosen \mathbf{e} in \mathbb{F}_{q}^{n} of weight t
Decryption with secret key (S, G, P):

$$
y P^{-1}=\left(m G^{\prime}+e\right) P^{-1}=m S G+e P^{-1}
$$

SG and G are generator matrices of the same code C $\mathrm{e} \mathrm{P}^{-1}$ has weight t
Decoder gives $\mathbf{c}=\mathrm{mSG}$ as closest codeword

Code based PKC systems - 3

Minimum distance decoding is NP-hard
(Berlekamp-McEliece-Van Tilborg)
It is assumed that:

1. $P \neq N P$
2. Decoding up to half the minimum distance is hard
3. One cannot distinguish nor retrieve the original code by disguising it by S and P

Attacks on code based PKC systems - 1

Generic attack - decoding algorithms:

- McEliece 1978
- Brickell, Lee 1988
- Leon 1988
- van Tilburg 1988
- Stern 1989
- Canteaut, Chabaud, Sendrier 1998
- Finiasz-Sendrier 2009
- Bernstein-Lange-Peters 2008-2011
- Becker-Joux-May-Meurer Eurocrypt 2012

Attacks on code based PKC systems - 2

Structural attacks:

- GRS codes (Sidelnikov-Shestakov)
- subcodes of GRS codes (Wieschebrink, Márquez-Martínez-P)
- Alternant codes: open
- Goppa codes: open
- Algebraic geometry codes: (Faure-Minder, genus $g \leq 2$)
- VSAG codes: (Márquez-Martínez-P-Ruano, arbitrary g)
- Polynomial attack on AG codes: (Couvreur-Márquez-P, using ECP's)

Codes with t-ECP

$\mathcal{P}(n, t, q)$ is the collection of pairs (A, B) that satisfy

$$
\begin{array}{ll}
E .2 & k(A)>t \\
E .3 & d\left(B^{\perp}\right)>t \\
E .5 & d\left(A^{\perp}\right)>1 \\
E .6 & d(A)+2 t>n
\end{array}
$$

Let

$$
C=\mathbb{F}_{q}^{n} \cap(A * B)^{\perp}
$$

Then $d(C)$ is at least $2 t+1$ and (A, B) is a t-ECP for C

ECP one-way function

$\mathcal{F}(n, t, q)$ is the collection of \mathbb{F}_{q}-linear codes
of length n and minimum distance $d \geq 2 t+1$

Consider the following map

$$
\begin{array}{rllc}
\varphi_{(n, t, q)}: & \mathcal{P}(n, t, q) & \longrightarrow & \mathcal{F}(n, t, q) \\
(A, B) & \longmapsto & C
\end{array}
$$

Question:
Is this a one-way function?

Conclusion

- Many known classes of codes
- that have decoding algorithm correcting t-errors
- have a t-ECP
- and are not suitable for a code based PKC

Question for future research
Is the ECP map a one-way function?

Thank you for your attention!

